Menu Close

【焊接新手課】焊接是什麼?一次看懂焊接的原理及發展

焊接是什麼?一次看懂焊接的原理及發展

焊接(welding)是什麼?

焊接(welding)是什麼?

焊接 (welding)或稱銲接熔接鎔接,是一種以加熱或加壓方式接合金屬或其他熱塑性塑料的工藝及技術。焊接則以下列三種方式達到接合目的:

1.加熱需接合的工件/母材,使其熔化形成熔池,而熔池冷卻凝固後便以接合,必要時可加入熔填物輔助。
2.單獨加熱熔點較低的焊料,無需熔化工件本身,借焊料的毛細作用連接工件(如軟釺焊、硬焊)。
3.在相當於或低於工件熔點的溫度下輔以高壓、疊合擠塑或振動等,使兩工件間相互滲透接合(如鍛焊、固態焊接)

依具體的焊接工藝,焊接可細分為氣焊、電阻焊、電弧焊、感應焊接及雷射焊接等其他特殊焊接。在傳統的輕、重工業領域中,最常見的便為電弧焊接的應用;而再電子工業領域,相對以雷射焊接的精密焊接形式為主。

焊接的能量來源有很多種,包括氣體焰、電弧、雷射、電子束、摩擦和超聲波等。除了在工廠中使用外,焊接還可以在多種環境下進行,如野外、水下和太空。無論在何處,焊接都可能給操作者帶來危險,所以在進行焊接時必須採取適當的防護措施。焊接給人體可能造成的傷害包括燒傷、觸電、視力損害、吸入有毒氣體、紫外線照射過度等。

來去逛逛有哪些焊接防護用品:https://mcl888.com/product-category/protection/

※ 「焊接」和「銲接」的差別在哪?

焊接與銲接這兩種用法皆被普遍接受,而「焊」字的演變及由來為早期的焊接方式主要以氣體燒焊來進行,所以早期多以「火」字旁的焊來表示。隨著工業革命與進步,後續多以兩種以上金屬材質產生電弧的焊接模式來進行銲接,也就是目前傳統工業最常見的「電弧銲」,至此也常以「金」字旁的銲來表示,所以大家也可以發現台灣許多銲材製造廠都會以「銲」來呈現;雖然現在不會強制性地用這種方式來區分「銲」、「焊」兩者的差別性,但以整體的網路搜尋量、文獻的使用量來說,普遍仍以「焊」字的使用量最多。

焊接 銲接 到底用哪個才對?

焊接的歷史與起源

金屬連接的歷史可以追溯到數千年前,早期的焊接技術見於青銅時代和鐵器時代的歐洲和中東。數千年前的兩河文明已開始使用軟釺焊技術。西元前340年,在製造重達5.4噸的印度德里鐵柱時,人們就採用了焊接技術。

20世紀早期,因為戰爭導致軍用設備需求增大,與之相應的金屬連接工藝受到重視,進而促進了焊接技術的發展。戰後,先後出現了幾種現代焊接技術,包括目前最流行的手工電弧焊、以及諸如氣體遮護金屬焊、埋弧焊(潛弧焊)、包藥焊線電弧焊和電渣焊這樣的自動或半自動焊接技術。20世紀下半葉,焊接技術的發展日新月異,雷射焊接和電子束焊接被開發出來。今天,焊接機器人在工業生產中得到了廣泛的應用。研究人員仍在深入研究焊接的本質,繼續開發新的焊接方法,並進一步提高焊接品質。

圖一、德里鐵柱

中世紀的鐵匠通過不斷鍛打紅熱狀態的金屬使其連接,該工藝被稱為鍛焊。維納重·比林格塞奧於1540年出版的《火焰學》一書記述了鍛焊技術。文藝復興時期的工匠已經很好地掌握了鍛焊,接下來的幾個世紀中,鍛焊技術不斷改進。到19世紀時,焊接技術的發展突飛猛進,其風貌大為改觀。1800年,漢弗里·戴維爵士發現了電弧;稍後隨著俄國科學家尼庫萊·斯拉夫耶諾夫與美國科學家C·L·哥芬發明的金屬電極推動了電弧焊工藝的成型。電弧焊與後來開發的採用碳質電極的碳弧焊,在工業生產上得到廣泛應用。1900年左右,A·P·斯特羅加諾夫在英國開發出可以提供更穩定電弧的金屬包敷層碳電極;1919年,C·J·霍爾斯拉格(C. J. Holslag)首次將交流電用於焊接,但這一技術直到十年後才得到廣泛應用。

電阻焊在19世紀末發展,第一份關於電阻焊的專利是伊萊休·湯姆森於1885年申請的,他在接下來的15年中不斷地改進這一技術。鋁熱焊接和可燃氣焊接發明於1893年。埃德蒙·戴維於1836年發現了乙炔,到1900年左右,由於一種新型氣炬的出現,可燃氣焊接開始得到廣泛的應用。由於廉價和良好的移動性,可燃氣焊接在一開始就成為最受歡迎的焊接技術之一。但是隨著20世紀之中,工程師們對電極表面金屬敷蓋技術的持續改進(即助焊劑的發展),新型電極可以提供更加穩定的電弧,並能夠有效地隔離基底金屬與雜質,電弧焊因此能夠逐漸取代可燃氣焊接,成為使用最廣泛的工業焊接技術。

第一次世界大戰使得對焊接的需求激增,各國都在積極研究新型的焊接技術。英國主要採用弧焊,他們製造了第一艘全焊接船體的船舶弗拉戈號。大戰期間,弧焊亦首次應用在飛機製造上,如許多德國飛機的機體就是通過這種方式製造的。另外值得注意的是,世界上第一座全焊接公路橋於1929年在波蘭沃夫其附近的Słudwia Maurzyce河上建成,該大橋是由華沙工業學院的斯特藩·布萊林(Stefan Bryła)於1927年設計的 。

1920年出現了自動焊接,通過自動送絲裝置來保證電弧的連貫性。保護氣體在這一時期得到了廣泛的重視。因為在焊接過程中,處於高溫狀態下的金屬會與大氣中的氧氣和氮氣發生化學反應,因此產生的空泡化合物將影響接頭的強度。解決方法是,使用氫氣、氬氣、氦氣來隔絕熔池和大氣。接下來的10年中,焊接技術的進一步發展使得諸如這樣的活性金屬也能焊接。1930年代至第二次世界大戰期間,自動焊、交流電和活性劑的引入大大促進了弧焊的發展。

20世紀中葉,科學家及工程師們發明了多種新型焊接技術。1930年發明的植釘焊,很快就在造船業和建築業中廣泛使用。同年發明的埋弧焊,直到今天還很流行。鎢極氣體保護電弧焊在經過幾十年的發展後,終於在1941年得以最終完善。隨後在1948年,氣體遮護金屬焊接使得有色金屬的快速焊接成為可能,但這一技術需要消耗大量昂貴的保護氣體。採用消耗性焊條作為電極的手工電弧焊是在1950年代發展起來的,並迅速成為最流行的金屬弧焊技術。1957年,包藥焊線電弧焊接首次出現,它採用的自保護焊絲電極可用於自動化焊接,大大提高了焊接速度。同一年,電漿弧焊發明,氣電焊則於1961年發明。

焊接技術在近年來的發展包括:1958年的電子束焊接能夠加熱面積很小的區域,使得深處和狹長形工件的焊接成為可能。其後雷射焊接於1960年發明,在其後的幾十年歲月中,它被證明是最有效的高速自動焊接技術。不過,電子束焊與雷射焊兩種技術由於其所需配備價格高昂,其應用範圍受到限制。

如何了解銲接的品質

衡量焊接品質的主要指標是焊點及其周邊材料的強度。影響強度的因素很多,包括焊接工藝、能量的注入形式、母材、填充材料、助焊劑、接頭設計形式,以及上述因素間的相互作用。通常採用有損或無損檢測來檢查焊接品質,檢測的主要對象是焊點的缺陷、殘餘應力和變形的程度、熱影響區的性質。焊接檢測有一整套規範和標準,來指導操作者採用適當的焊接工藝並判斷焊接品質。想要了解常見的焊接缺陷及檢測方法可以參考以下文章:

【延伸閱讀】焊接常見缺陷問題及探傷方法

熱影響區

通過顏色來判斷焊接時的溫度是很準確的,但是顏色區域不代表熱影響區的大小。真正的熱影響區實際上是焊縫周圍很窄小的區域。

焊接工藝對焊縫附近的金屬特性的影響是可以標定的,不同焊接材料和焊接工藝會形成大小不一、特性各異的熱影響區。母材的熱擴散係數對熱影響區的性質有很大的影響:較大的熱擴散係數使得材料能以較快速度冷卻,形成相對較小的熱影響區。與之相反的是,如果材料的熱擴散係數較小,散熱困難,熱影響區相對就較大。焊接工藝的熱能輸入量對熱影響區也有顯著的影響,如氧乙炔焊接中,由於熱量不是集中輸入的,會形成較大的熱影響區。而諸如雷射焊接這樣的工藝,能夠把有限的熱量集中輸出,所造成的熱影響區較小。弧焊所造成的熱影響區則位於兩種極端情況之間,操作者水平往往決定了弧焊熱影響區的大小。

計算弧焊的熱輸入量,可以採用以下的公式: Q=\left({\frac  {V\times I\times 60}{S\times 1000}}\right)\times {\mathit  {Efficiency}}

公式中Q為熱輸入量(kJ/mm),V為電壓(V),I為電流(A),S為焊接速度(mm/min)。Efficiency(效率)的取值取決於所採用的焊接工藝:手工電弧焊為0.75,氣體金屬電弧焊和埋弧焊為0.9,鎢極氣體保護電弧焊為0.8。

扭曲和斷裂

由於 焊接 時金屬被加熱到熔化溫度,它們在冷卻時會產生收縮。收縮會產生殘餘應力,並造成縱向和圓周方向的扭曲。扭曲可能導致產品形狀的失控。為了消除扭曲,有時焊接時會引入一定的偏移量,以抵消冷卻造成的扭曲。限制扭曲的其他方法包括將工件夾緊,但是這樣可能導致熱影響區殘餘應力的增大。殘餘應力會降低母材的機械性能,形成災難性的冷裂紋。第二次世界大戰期間建造的多艘自由輪就出現過這種問題。冷裂紋僅見於鋼材料,它與鋼冷卻時形成馬氏體有關,斷裂多發生在母材的熱影響區。為了減少扭曲和殘餘應力,應該控制焊接的熱輸入量,單個材料上的焊接應該一次完工,而不是分多次進行。

其他類型的裂紋,如熱裂紋硬化裂紋,在所有金屬的焊接熔化區都可能出現。為了減少裂紋的出現,金屬焊接時不應施加外力約束,並採用適當的助焊劑。

現代常見的焊接工藝

電弧銲接-傳統產業最常見的焊接工藝

電弧焊接使用焊接電源來創造並維持電極和焊接材料之間的電弧,使焊點上的金屬融化形成熔池。它們可以使用直流電或交流電,使用消耗性或非消耗性電極。有時在熔池附近會引入某種惰性或半惰性氣體-即保護氣體,有時還會添加焊補材料。

電弧焊過程要消耗大量的電能,可以通過多種焊接電源來供應能量。最常見的焊接電源包括恆流電源和恆壓電源。在弧焊過程中,所施加的電壓決定電弧的長度,所輸入的電流則決定輸出的熱量。恆流電源輸出恆定的電流和波動的電壓,多用於人工焊接,如手工電弧焊和鎢極氣體保護電弧焊。因為人工焊接要求電流保持相對穩定,而在實際操作中,電極的位置很難保證不變,弧長和電壓也會隨之發生變化。恆壓電源輸出恆定的電壓和波動的電流,因此常用於自動焊接工藝,如熔化極氣體保護電弧焊、藥芯焊絲電弧焊和埋弧焊。在這些焊接工藝中中,電弧長度保持恆定,因為焊頭和工件之間距離發生的任何波動都通過電流的變化來彌補。例如,如果焊頭和工件的間隔過近,電流將急速增大,使得焊點處發熱量驟增,焊頭部分融化直至間隔恢復到原來的程度。

所用的電的類型對焊接有很大影響。耗電量大的焊接工藝,如國內的手工電弧焊接皆以交流電居多。電極可接正極或負極。在焊接中,接正極的部分會有更大的熱量集中,因此,改變電極的極性將影響到焊接性能。如果是工件接正極,工件將更熱,焊接深度和焊接速度也會大大提高。反之,工件接負極的話將焊出較淺的焊縫。耗電量較小的焊接工藝,如鎢極氣體保護電弧焊,可以通直流電(採用任意接頭方式),也可以使用交流電。然而,這些焊接工藝所採用的電極都是只產生電弧而不提供焊料的,因此在使用直流電時,接正電極的時候,焊接深度較淺,而接負電極時能產生更深的焊縫。交流電使電極的極性迅速變化,從而將生成中等穿透程度的焊縫。使用交流電的缺點之一是每一次變化的電壓通過電壓零點後,電弧必須重新點燃,為解決這一問題,一些特殊的焊接電源產生的是波型的交流電,而不是通常的正弦波型,使得電壓變化通過零點時的負面影響降到最小。

遮護金屬電弧焊接(手工電弧銲接、SMAW焊接)

手工電弧焊是最常見的焊接工藝。在焊接材料和消耗性的焊條之間,通過施加高電壓來形成電弧,焊條的芯部分通常由鋼製成,外層包覆有一層助焊劑。在焊接過程中,助焊劑燃燒產生二氧化碳,保護焊縫區免受氧化和污染。電極芯則直接充當填充材料,不需要另外添加焊料。

這種工藝的適應面很廣,所需的設備也相對便宜,非常適合現場和戶外作業。操作者只需接受少量的培訓便可熟練掌握。焊接時間較慢,因為消耗性的焊條電極必須經常更換。焊接後還需要清除助焊劑形成的焊渣。此外,這一技術通常只用於焊接黑色金屬,焊鑄鐵、鎳、鋁、銅等金屬時需要使用特殊焊條。缺乏經驗的操作者還往往難以掌握特殊位置的焊接。

【延伸閱讀】焊接新手課:什麼是遮護金屬電弧銲接(smaw)?

氣體遮護金屬焊接(GMAW焊接、CO2焊接)

氣體遮護金屬電弧銲接,通常包含MIG(又稱為金屬-惰性氣體焊)及MAG(又稱為金屬-活性氣體焊),是一種半自動或自動的焊接工藝。它採用焊條連續送絲作為電極,並用惰性、半惰性或活性氣體,以及混合氣體保護焊點。和手工電弧焊相似,操作者稍加培訓就能熟練掌握。由於焊絲供應是連續的,熔化極氣體保護電弧焊和手工電弧焊相比能獲得更高的焊接速度。此外,因其電弧相對手工電弧焊較小,熔化極氣體保護電弧焊更適合進行特殊位置焊接(如仰焊)。

和手工電弧焊相比,氣體遮護金屬電弧銲接所需的設備要複雜和昂貴得多,安裝過程也比較繁瑣。因此其便利性和通用性並不好,加上需使用保護氣體,導致氣體遮護金屬電弧銲接並不適合於戶外作業。但是,熔化極氣體保護電弧焊的焊接速度較快,非常適合工廠化大規模焊接。且這一工藝適用於多種金屬,包括黑色和有色金屬。

【延伸閱讀】什麼是氣體遮護金屬電弧銲接(CO2焊接)?

包藥焊線電弧焊接(藥芯焊絲電弧焊、包藥焊線電弧焊、FCAW焊接)

另一種相似的技術是藥芯焊絲電弧焊,它使用和熔化極氣體保護電弧焊相似的設備,但採用包覆著粉末材料的鋼質電極芯的焊絲。和標準的實心焊線相比,這種焊線更加昂貴,在焊接中會產生煙和焊渣,但使用它可以獲得更高的焊接速度和更大的焊深。

【焊接新手課】什麼是包藥銲線電弧銲接(FCAW)?

鎢極氣體保護電弧焊接(氬焊、TIG焊接)

鎢極氣體保護電弧焊或稱TIG焊接(有時誤稱為氦弧焊),是一種手工焊接工藝。它採用非消耗性的鎢電極,惰性或半惰性的保護氣體,以及額外的焊料。這種工藝擁有穩定的電弧和較高的焊接品質,特別適用於焊接板料,但這一工藝對操作者的要求較高,焊接速度相對較低。

鎢極氣體保護電弧焊幾乎適用於所有的可焊金屬,最常用於焊接不鏽鋼輕金屬。它往往用於焊接那些對焊接品質要求較高的產品,如自行車、飛機和海上作業工具。與之類似的是電漿弧焊,它採用鎢電極和電漿氣體來生成電弧。電漿弧焊的電弧相對於鎢極氣體保護電弧焊更集中,使對電漿弧焊的橫向控制顯得尤為重要,因此這一技術對機械系統的要求較高。由於其電流較穩定,該方法與鎢極氣體保護電弧焊相比,焊深更大,焊接速度更快。它能夠焊接鎢極氣體保護電弧焊所能焊接的幾乎所有金屬,唯一不能焊接的是。不鏽鋼自動焊接是電漿弧焊的重要應用。該工藝的一種變種是電漿切割,適用於鋼的切割。

【焊接新手課】什麼是鎢極氣體保護電弧焊接(TIG、氬焊)?

潛弧焊接(SAW焊接)

潛弧焊接,是一種高效率的焊接工藝。埋弧焊的電弧是在助焊劑內部生成的,由於助焊劑阻隔了大氣的影響,焊接品質因此得以大大提升。埋弧焊的焊渣往往能夠自行脫落,無需清理焊渣。埋弧焊可以通過採用自動送絲裝置來實現自動焊接,這樣可以獲得極高的焊接速度。由於電弧隱藏在助焊劑之下,幾乎不產生煙霧,埋弧焊的工作環境大大好於其他弧焊工藝。這一工藝常用於工業生產,尤其是在製造大型產品和壓力容器時。其他的弧焊工藝包括原子氫焊碳弧焊電渣焊氣電焊螺柱焊接等。

【焊接新手課】什麼是潛弧銲?(SAW)

氣焊

最常見的氣焊工藝是可燃氣 焊接 ,也稱為氧乙炔焰焊接。它是最古老,最通用的焊接工藝之一,但近年來在工業生產中已經不多見。它仍廣泛用於製造和維修管道,也適用於製造某些類型的金屬藝術品。可燃氣焊接不僅可以用於焊接鐵或鋼,還可用於銅焊、釺焊、加熱金屬(以便彎曲成型)、氣焰切割等。

可燃氣焊接所需的設備較簡單,也相對便宜,一般通過氧氣乙炔混合燃燒來產生溫度約為3100攝氏度的火焰。因為火焰相對電弧更分散,可燃氣焊接的焊縫冷卻速度較慢,可能會導致更大的應力殘留和焊接變形,但這一特性簡化了高合金鋼的焊接。一種衍生的應用被稱為氣焰切割,即用氣體火焰來切割金屬[6]。其他的氣焊工藝有空氣乙炔焊、氧氫焊、氣壓焊,它們的區別主要在於使用不同的燃料氣體。氫氧焊有時用於小物品的精密焊接,如珠寶首飾。氣焊也可用於焊接塑料,一般採用加熱空氣來焊接塑料,其工作溫度比焊接金屬要低得多。

【來去逛逛】氧乙炔切割、熔接用商品(乙炔錶、切斷器、切斷火口、雙色管…)

電阻焊

電阻焊的原理是:兩個或多個金屬表面接觸時,接觸面上會產生接觸電阻。如果在這些金屬中通過較大的電流(1,000—100,000安培),根據焦耳定律,接觸電阻大的部分會發熱,將接觸點附近的金屬熔化形成熔池。一般來說,電阻焊是一種高效、無污染的焊接工藝,但其應用因為設備成本的問題受到限制。

點焊

點焊,或稱電阻點焊,是一種流行的電阻焊工藝,用於連接疊壓在一起的金屬板,金屬板的厚度可達3毫米。兩個電極在固定金屬板的同時,還向金屬板輸送強電流。該方法的優點包括:能源利用效率較高,工件變形小,焊接速度快,易於實現自動化焊接,而且無需焊料。由於電阻點焊的焊縫強度明顯較低,這一工藝只適合於製造某些產品。它廣泛應用於汽車製造業,一輛普通汽車上由工業機器人進行的焊接點多達幾千處。一種特殊的點焊工藝可用於不鏽鋼上。

與點焊類似的一種焊接工藝稱為縫焊,它通過電極施加壓力和電流來拼接金屬板。縫焊所採用的電極是軋輥形而非點形,電極可以滾動來輸送金屬板,這使得縫焊能夠製造較長的焊縫。在過去,這種工藝被用於製造易拉罐,但現在已經很少使用。其他的電阻焊工藝包括閃光焊凸焊對焊等。

硬焊和軟焊

使用能在比母材更低的溫度下熔化的填料材(釬料或是軟釬料:錫)進行接合的方法,接合時不熔化母材。釬焊的用途方面,常用於要求氣密性的管子/連接器/閥門、要求耐壓性和氣密性的壓力容器、要求耐腐蝕性和耐熱性的汽車和摩托車等交通工具的零件等。另外,使用具備導電性且熔化溫度低的「軟釬料(錫)」的「錫焊」,廣泛用於電路、電氣連接器、精密電子零件等。

硬焊(硬釺焊,Brazing)和軟焊(軟釺焊,Soldering)是以熔點低於欲連接工件之熔填物填充於兩工件間,並待其凝固後將二者接合起來的一種接合法。所使用的熔填物熔點在427℃(800℉)以下者,稱為軟焊,焊接金屬427℃(800℉)以上者,稱為硬焊。

能量束焊接-高科技產業的焊接工藝

能源束焊接工藝包括雷射焊接和電子束焊接。它們都是相對較新的工藝,在高科技製造業中很受歡迎。這兩種工藝的原理相近,最顯著的區別在於它們的能量來源。雷射焊接法採用的是高度集中的雷射束,而電子束焊接法則使用在真空室中發射的電子束。由於兩種能量束都具有很高的能量密度,能量束焊接的熔深很大,而焊點很小。這兩種焊接工藝的工作速度都很快,很容易實現自動化,生產效率極高。主要缺點是設備成本極其昂貴(雖然價格一直在下降),焊縫容易發生熱裂。在這個領域的新發展是雷射複合焊,它結合了雷射焊接和電弧焊的優點,因此能夠獲得品質更高的焊縫。

固態焊接

和最早的焊接工藝鍛焊類似的是,一些現代焊接工藝也無需將材料熔化來形成連接。其中最流行的是超聲波焊接,它通過施加高頻聲波和壓力來連接金屬和熱塑塑料製成的板料和線。超聲波焊接的設備和原理都和電阻焊類似,只是輸入的不是電流而是高頻振動。這一焊接工藝焊接金屬時不會將金屬加熱到熔化,焊縫的形成依賴的是水平振動和壓力。焊接塑料的時候,則應該在熔融溫度下施加垂直方向的振動。超聲波焊接常用於製造質地的電氣接口,也多見於焊接複合材料。

另一種較常見固態焊接工藝是爆炸焊,它的原理是使材料在爆炸產生的高溫高壓作用下形成連接。爆炸產生的衝擊使得材料短時間內表現出可塑性,從而形成焊點,這一過程中只產生很少量的熱量。這一工藝通常用於連接不同材料的焊接,如在船體或複合板上連接鋁製部件。其他固態焊接工藝包括擠壓焊(Co-extrusion welding)、冷焊擴散焊摩擦焊(包括攪拌摩擦焊)、EMPT焊接高頻焊(High frequency welding)、熱壓焊(Hot pressure welding)、感應焊熱軋焊  (Roll welding)。

EMPT焊接

電磁脈衝技術(EMPT)– 一種創新的焊接方式

電磁脈衝技術(EMPT)可以在不相互接觸的情況下對金屬進行連接、焊接、成形和切割。EMPT利用電磁感應圈,從一個脈衝發生器中產生出短暫而非常強的電流。感應圈產生出的電磁場,可以瞬間壓縮或者膨脹而改變管材的直徑。由於管材表面可以短暫帶渦電流,因而此技術同樣可以處理沒有磁性的金屬,如鋁。

電磁脈衝技術(EMPT)可以對金屬進行連接、焊接、成形和切割,尤其適合於導電性強的金屬管材,如鋁、銅、鋼等。同樣可以壓縮或者膨脹不對稱的橫截面,根據需要進行機械密封、固相焊接、或簡單的形狀改變。由於其速度非常快,因此產生出的固相焊接的微觀結構可以接近於爆炸焊接或者爆炸包覆。

很多情況下需要使用固相焊接,也被稱為原子結合,因為他是在原子能級上進行的連接。其方法和爆炸焊接很相似,都是在高壓作用下兩個純金屬工件的原子相互擠壓,直到發生電子轉移,形成一個新的金屬混合物。然而EMPT操作時溫度不會升高,即沒有受到高溫影響的區域,因而微觀結構也就不會發生改變。EMPT焊接是靠工件之間的V型接口,即兩工件連接端事先做成圓錐形,

工件相互之間進行「滾動式」擠壓接觸。如果產品對於密封性或傳導性有特殊要求,EMPT焊接的優勢則更加突出。在V形端部產生的接觸擠壓力範圍約為1000N/mm²,並伴有巨大的張力。這基本上發生在兩個工件的接觸區域前面的十幾微米的接觸點之間。表層下的塑性變形,導致兩個接觸體的氧化層都發生破裂,因而發生與爆炸焊接相類似的波浪狀微觀結構。有限元分析表明,塑性變形速度超過聲音在空氣中傳播速度,而遠遠低於聲音在金屬中傳播速度。工件之間的空氣層被壓縮,加速向頂端角部擠壓,由此產生的噴射氣體將連接區域的碎屑及氧化粒子等吹走。

EMPT焊接的優點在於結合強度大,因為結合力相當於要將工件熔化的力。另外,EMPT焊接可以用在不同金屬材料上類似」氦密封」連接,而不產生高熱量。通常難焊的不銹鋼材料也可以使用EMPT焊接,甚至可以大批量地焊接不同的金屬,如鋼和鋁、鋼和銅、以及銅和鋁等。